/* Calf Box, an open source musical instrument. Copyright (C) 2010-2011 Krzysztof Foltman This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "config.h" #include "config-api.h" #include "dspmath.h" #include "module.h" #include "onepole-float.h" #include #include #include #include #include #include #include // The reverb structure is based on this article: // http://www.spinsemi.com/knowledge_base/effects.html#Reverberation #define DELAY_BUFFER 1024 #define ALLPASS_BUFFER 2048 struct allpass_param { int delay; float diffusion; }; struct cbox_reverb_leg_params { int delay_length; int allpass_units; struct allpass_param allpasses[0]; }; struct cbox_reverb_leg { struct cbox_reverb_leg_params *params; float (*allpass_storage)[ALLPASS_BUFFER]; float delay_storage[DELAY_BUFFER]; struct cbox_onepolef_state filter_state; float buffer[CBOX_BLOCK_SIZE]; }; static struct cbox_reverb_leg_params *leg_params_new(int delay_length, int allpasses, const struct allpass_param *allpass_params) { struct cbox_reverb_leg_params *p = malloc(sizeof(struct cbox_reverb_leg_params) + sizeof(struct allpass_param) * allpasses); p->delay_length = delay_length; p->allpass_units = allpasses; if (allpass_params) { for (int i = 0; i < allpasses; i++) memcpy(&p->allpasses[i], &allpass_params[i], sizeof(struct allpass_param)); } return p; } static void cbox_reverb_leg_reset(struct cbox_reverb_leg *leg) { cbox_onepolef_reset(&leg->filter_state); int i; for (int a = 0; a < leg->params->allpass_units; a++) for (i = 0; i < ALLPASS_BUFFER; i++) leg->allpass_storage[a][i] = 0.f; for (i = 0; i < DELAY_BUFFER; i++) leg->delay_storage[i] = 0.f; } static void cbox_reverb_leg_init(struct cbox_reverb_leg *leg) { leg->allpass_storage = malloc(leg->params->allpass_units * ALLPASS_BUFFER * sizeof(float)); cbox_reverb_leg_reset(leg); } static void cbox_reverb_leg_cleanup(struct cbox_reverb_leg *leg) { free(leg->params); free(leg->allpass_storage); } #define MODULE_PARAMS reverb_params struct reverb_params { float decay_time; float wetamt; float dryamt; float lowpass, highpass; }; struct reverb_state { struct cbox_reverb_leg *legs; int leg_count; int total_time; }; struct reverb_module { struct cbox_module module; struct cbox_onepolef_coeffs filter_coeffs[2]; struct reverb_params *params, *old_params; struct reverb_state *state; float gain; int pos; }; gboolean reverb_process_cmd(struct cbox_command_target *ct, struct cbox_command_target *fb, struct cbox_osc_command *cmd, GError **error) { struct reverb_module *m = (struct reverb_module *)ct->user_data; EFFECT_PARAM("/wet_amt", "f", wetamt, double, dB2gain_simple, -100, 100) else EFFECT_PARAM("/dry_amt", "f", dryamt, double, dB2gain_simple, -100, 100) else EFFECT_PARAM("/decay_time", "f", decay_time, double, , 500, 5000) else EFFECT_PARAM("/lowpass", "f", lowpass, double, , 30, 20000) else EFFECT_PARAM("/highpass", "f", highpass, double, , 30, 20000) else if (!strcmp(cmd->command, "/status") && !strcmp(cmd->arg_types, "")) { if (!cbox_check_fb_channel(fb, cmd->command, error)) return FALSE; return cbox_execute_on(fb, NULL, "/wet_amt", "f", error, gain2dB_simple(m->params->wetamt)) && cbox_execute_on(fb, NULL, "/dry_amt", "f", error, gain2dB_simple(m->params->dryamt)) && cbox_execute_on(fb, NULL, "/decay_time", "f", error, m->params->decay_time) && cbox_execute_on(fb, NULL, "/lowpass", "f", error, m->params->lowpass) && cbox_execute_on(fb, NULL, "/highpass", "f", error, m->params->highpass) && CBOX_OBJECT_DEFAULT_STATUS(&m->module, fb, error); } else return cbox_object_default_process_cmd(ct, fb, cmd, error); return TRUE; } void reverb_process_event(struct cbox_module *module, const uint8_t *data, uint32_t len) { // struct reverb_module *m = (struct reverb_module *)module; } static void cbox_reverb_process_leg(struct reverb_module *m, int u) { int pos; int dv; float *storage; struct reverb_state *state = m->state; struct cbox_reverb_leg *b = &state->legs[u]; int uprev = u ? (u - 1) : (state->leg_count - 1); struct cbox_reverb_leg *bprev = &state->legs[uprev]; float gain = m->gain; pos = m->pos; storage = bprev->delay_storage; float *buf = b->buffer; for (int i = 0; i < CBOX_BLOCK_SIZE; i++) { buf[i] += cbox_onepolef_process_sample(&b->filter_state, &m->filter_coeffs[u&1], storage[pos & (DELAY_BUFFER - 1)] * gain); pos++; } int units = b->params->allpass_units; for (int a = 0; a < units; a++) { pos = m->pos; storage = b->allpass_storage[a]; dv = b->params->allpasses[a].delay; float w = b->params->allpasses[a].diffusion; for (int i = 0; i < CBOX_BLOCK_SIZE; i++) { float dry = buf[i]; float out = dry; float delayed = storage[pos & (ALLPASS_BUFFER - 1)]; float feedback = sanef(out - w * delayed); buf[i] = sanef(feedback * w + delayed); storage[(pos + dv) & (ALLPASS_BUFFER - 1)] = feedback; pos++; } } pos = m->pos; storage = b->delay_storage; dv = b->params->delay_length - (u == 0 ? CBOX_BLOCK_SIZE : 0); for (int i = 0; i < CBOX_BLOCK_SIZE; i++) { storage[(pos + dv) & (DELAY_BUFFER - 1)] = buf[i]; pos++; } } void reverb_process_block(struct cbox_module *module, cbox_sample_t **inputs, cbox_sample_t **outputs) { struct reverb_module *m = (struct reverb_module *)module; struct reverb_params *p = m->params; float dryamt = p->dryamt; float wetamt = p->wetamt; struct reverb_state *s = m->state; if (p != m->old_params) { float tpdsr = 2.f * M_PI * m->module.srate_inv; cbox_onepolef_set_lowpass(&m->filter_coeffs[0], p->lowpass * tpdsr); cbox_onepolef_set_highpass(&m->filter_coeffs[1], p->highpass * tpdsr); float rv = p->decay_time * m->module.srate / 1000; m->gain = pow(0.001, s->total_time / (rv * s->leg_count / 2)); m->old_params = p; } int mid = s->leg_count >> 1; memcpy(s->legs[0].buffer, inputs[0], CBOX_BLOCK_SIZE * sizeof(float)); memcpy(s->legs[mid].buffer, inputs[1], CBOX_BLOCK_SIZE * sizeof(float)); for (int u = 1; u < mid; u++) { for (int i = 0; i < CBOX_BLOCK_SIZE; i++) s->legs[u].buffer[i] = 0.f; for (int i = 0; i < CBOX_BLOCK_SIZE; i++) s->legs[u + mid].buffer[i] = 0.f; } for (int u = 0; u < s->leg_count; u++) cbox_reverb_process_leg(m, u); for (int i = 0; i < CBOX_BLOCK_SIZE; i++) outputs[0][i] = inputs[0][i] * dryamt + s->legs[mid - 1].buffer[i] * wetamt; for (int i = 0; i < CBOX_BLOCK_SIZE; i++) outputs[1][i] = inputs[1][i] * dryamt + s->legs[s->leg_count - 1].buffer[i] * wetamt; m->pos += CBOX_BLOCK_SIZE; } static void reverb_destroyfunc(struct cbox_module *module_) { struct reverb_module *m = (struct reverb_module *)module_; free(m->params); for (int i = 0; i < m->state->leg_count; i++) cbox_reverb_leg_cleanup(&m->state->legs[i]); free(m->state->legs); free(m->state); } static struct reverb_state *create_reverb_state(int leg_count, ...) { struct reverb_state *state = malloc(sizeof(struct reverb_state)); state->leg_count = leg_count; state->legs = malloc(state->leg_count * sizeof(struct cbox_reverb_leg)); va_list va; va_start(va, leg_count); state->total_time = 0; for (int u = 0; u < state->leg_count; u++) { int delay_length = va_arg(va, int); int allpasses = va_arg(va, int); state->total_time += delay_length; state->legs[u].params = leg_params_new(delay_length, allpasses, NULL); for (int i = 0; i < allpasses; i++) { struct allpass_param *ap = &state->legs[u].params->allpasses[i]; ap->delay = va_arg(va, int); ap->diffusion = va_arg(va, double); state->total_time += ap->delay * ap->diffusion; // very rough approximation } } va_end(va); for (int u = 0; u < state->leg_count; u++) cbox_reverb_leg_init(&state->legs[u]); return state; } MODULE_CREATE_FUNCTION(reverb) { static int inited = 0; if (!inited) { inited = 1; } struct reverb_module *m = malloc(sizeof(struct reverb_module)); CALL_MODULE_INIT(m, 2, 2, reverb); m->module.process_event = reverb_process_event; m->module.process_block = reverb_process_block; m->pos = 0; m->old_params = NULL; m->params = malloc(sizeof(struct reverb_params)); m->params->decay_time = cbox_config_get_float(cfg_section, "decay_time", 1000); m->params->dryamt = cbox_config_get_gain_db(cfg_section, "dry_gain", 0.f); m->params->wetamt = cbox_config_get_gain_db(cfg_section, "wet_gain", -6.f); m->state = create_reverb_state(4, 133, 3, 731, 0.45, 873, 0.5, 1215, 0.55, 461, 3, 1054, 0.5, 1519, 0.5, 973, 0.5, 251, 3, 617, 0.45, 941, 0.5, 1277, 0.55, 379, 3, 1119, 0.5, 1477, 0.5, 933, 0.5); #if 0 m->state = create_reverb_state(2, 133, 6, 1573, 0.35, 587, 0.35, 921, 0.45, 605, 0.5, 1051, 0.45, 397, 0.5, 251, 6, 1561, 0.35, 594, 0.35, 927, 0.55, 611, 0.5, 1147, 0.55, 393, 0.5); #endif m->params->lowpass = cbox_config_get_float(cfg_section, "lowpass", 8000.f); m->params->highpass = cbox_config_get_float(cfg_section, "highpass", 35.f); return &m->module; } struct cbox_module_keyrange_metadata reverb_keyranges[] = { }; struct cbox_module_livecontroller_metadata reverb_controllers[] = { }; DEFINE_MODULE(reverb, 2, 2)